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ABSTRACT: With the completion of the human genome sequence and the advent
of high-throughput genomics-based technologies, it is now possible to study the
entire human genome and epigenome. The challenge in the next decade of
biomedical research is to functionally annotate the genome, epigenome, tran-
scriptome, and proteome. High-throughput genome technology has already
produced massive amounts of data including genome sequences, single nucleo-
tide polymorphisms, and microarray gene expression. Our ability to manage
and analyze data needs to match the speed of data acquisition. We will summa-
rize our studies of allele-specific gene expression using genomic and computa-
tional approaches and identification of sequence motifs that are signature of
imprinted genes. We will also discuss about how bioinformatics can facilitate
epigenetic researches.

KEYWORDS: genomics; bioinformatics; cancer; epigenetics; genomic imprinting

INTRODUCTION

Genetic variation in humans is largely caused by DNA polymorphism and differ-
ences in gene expression. A biological role has been identified for differential allelic
expression associated with X-inactivation and genomic imprinting. Mendelian
inheritance assumes that genes from maternal and paternal chromosomes contribute
equally to human development. X chromosome inactivation silences gene expres-
sion from one of the two X chromosomes, thus providing an exception to Mendelian
inheritance.1 In addition, approximately 50 human autosomal genes are known to be
imprinted and thus are expressed from only one chromosome.2 However, it is
unknown whether variations in allelic gene expression affect only the X chromo-
some and imprinted genes or whether they affect human genes generally. Recently,
a group from Johns Hopkins University reported that 6 out of 13 genes show signif-
icant difference in gene expression between the two alleles and that this variation in
allelic gene expression was transmitted by Mendelian inheritance.3 They had previ-
ously shown that the allelic variation in the APC gene expression plays a critical role
in colon cancer.4 It will be interesting to know if genetic variations, especially
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regulatory single nucleotide polymorphisms (SNPs), contribute to common diseases
including cancer.

Genomic imprinting is an unusual mechanism of gene regulation that results in
preferential expression of one specific parental allele of a gene. Abnormal imprinting
can cause human diseases such as Beckwith-Wiedemann syndrome, Prader-Willi
syndrome, or Angelman’s syndrome.5–7 Loss of imprinting (LOI) is often associated
with human cancers.8,9 Although the exact mechanism of genomic imprinting is still
largely unknown, differentially methylated CpG islands, imprinted antisense tran-
scripts, and insulators may play important roles in the regulation of imprinting.10–12

Most of the imprinted genes are located in the imprinting domains.13 However, some
genes in the imprinting domain can escape imprinting regulation.14 Many imprinted
genes are scattered throughout the human genome. Therefore, it is likely that local
cis-elements as well as chromatin structure control genomic imprinting. Since
patterns of gene regulation and the corresponding regulatory elements are often
conserved across species, sequence comparison between human and mouse is a
powerful approach to identify regulatory sequences.15 Such comparative sequence
analysis has already identified a number of conserved sequences and novel imprinted
genes in human 11p1516 and Dlk1-Gtl2 loci.17,18

The current release of human Unigene (build #162) contains 4,472,210 EST
clones that are in 123,995 clusters: 16,069 of these Unigene clusters contain at least
33 EST clones. Genes with multiple ESTs can be used to deduce information about
digital gene expression.19 Computational methods have been used to identify SNPs
in redundant EST clones.20–22 We have also used EST database to mine allele-specific
gene expression.23

GENOME-WIDE ANALYSIS OF ALLELE-SPECIFIC
GENE EXPRESSION

A biological role has been identified for differential allelic expression associated
with X-inactivation and genomic imprinting; however, a large-scale analysis of
differential allelic expression of human genes has not been carried out. The HuSNP
chip was designed for simultaneous typing of 1494 SNPs of the human genome. We
adapted the HuSNP chip system to study allele-specific gene expression.24

Affymetrix only provided software for genotyping using the HuSNP chip. We
decided to develop the following computational method to quantify allele-specific
gene expression. We extracted the intensity values for each probe from the .CEL
files generated by Affymetrix MAS 4.0. The .CEL files contain the fluorescent
intensity values for each of the probes. The HuSNP chip contains 16 probes for each
SNP locus. Four of the 16 probes match perfectly to allele A, 4 to allele B, 4 have
1 mismatch to allele A, and the other 4 have 1 mismatch to allele B. Allele A and
allele B represent the two alleles of the SNP. Each probe contains 20 nucleotides.
The centers of the nucleotide probes are located at positions −4, −1, 0, and 1 relative
to the SNP. The 4 mismatch probes are identical to the perfect match probes, except
for 1 mismatched base, which is always located in the center of the probe. The value
for each probe pair was computed by subtracting the mismatch intensity from the
perfect match intensity. A t test was used to calculate a P value for the presence of
signal (intensity greater than 0) for each allele of each SNP. We considered a signal
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to be present if at least one allele had signal (P < .01, t test). Affymetrix defines a
miniblock as a group of 4 probes that include a perfect match probe for allele A
(PMA), a mismatch probe for allele A (MMA), a perfect match probe for allele B
(PMB), and a mismatch probe for allele B (MMB). We set (PMA − MMA) = 50 if
(PMA − MMA) is less than 50 for each miniblock. Similarly, baseline for allele B
was set at 50. An allele A fraction, defined as f = (PMA − MMA)/(PMA − MMA +
PMB − MMB), was computed for each miniblock, and the mean of the allele A frac-
tion f from miniblocks was computed for each SNP. The gene expression difference
between the two alleles from a heterozygous individual can be quantified using the
ratio of allele A/allele B, computed from f/(1 − f ). For each chip, we have intensities
from two scans called scan A and scan B. Generally, we used the intensity values
from scan A. We used the intensity values from scan B if the t test showed that both
alleles have no signal in scan A, while at least one of the alleles from scan B had
signal. The ratio was further normalized by the ratio of genomic DNA for the SNP.
We analyzed a set of HuSNP chip data from 7 individuals and found that 39 SNPs
were heterozygous in at least 5 individuals. We computed the 95% confidence interval
for the allelic ratio of genomic DNA for each of these 39 SNPs, and the average con-
fidence interval was between 0.5 and 2.0. This value was used to select those genes
that show significant difference in the expression between the two alleles.

In order to measure allele-specific gene expression quantitatively, we first needed
to find out (1) which of the SNPs on the chip are located in transcribed regions and
(2) whether the system can measure allele-specific expression accurately. Using
blast searches and annotations in dbSNP, we found that 1063 of the SNPs are located
in transcribed regions. To address the second issue, we used our computational
method to extract the fluorescent intensity for each probe from an Affymetrix output
file and quantify the ratio of expression of the two alleles. To assess the precision of
the system, we performed experiments in duplicate for both genomic DNA and for
polyA RNA from 3 fetuses. We found that the correlation between the repeated
experiments was very high, with average Pearson correlation coefficients of 0.98
(P < .001) for genomic DNA and 0.95 (P < .001) for RNA. We then performed geno-
typing and allele-specific gene expression in kidney and liver from 7 fetuses. Geno-
type calls were obtained using the Affymetrix MAS 4.0 software, and quantitative
allele-specific gene expression was computed using the method that we have devel-
oped. To be included in our analysis, each SNP had to meet the following criteria:
(1) at least one fetus is heterozygous for the SNP; (2) the SNP is among the 1063
mapped within a transcribed region; and (3) the gene containing the SNP is
expressed in kidney or liver. We found that 603 SNPs met all three criteria and 326
(54%) of which showed preferential expression of one allele; for 170 genes, there
was at least a 4-fold difference in expression between the two alleles in at least one
sample. Some of these 170 genes are imprinted (i.e., SNPRN, IPW, HTR2A, and
PEG3). The genomic locations of all SNPs on the Affymetrix HuSNP chip were
identified. Some of the genes showing differential allelic expression are clustered in
the same genomic region, and some are in imprinted domains. HTR2A, LOC51131,
and FLJ13639 are located at 13q14, and all three show mono-allelic expression.
SNPRN, IPW, and LOC145622 are in the imprinted domain at 15q12, and all three
genes preferentially express one allele. However, the majority of the genes that show
preferential expression of one allele are scattered on different chromosomes,
indicating that allelic variation is very common throughout the human genome. Our
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studies demonstrate that allele-specific gene expression is common and thus may
play a significant role in human genetic variation.

COMPUTATIONAL ANALYSIS OF ALLELE-SPECIFIC
GENE EXPRESSION

We developed a computational method by data mining of Unigene database to
predict differential allelic gene expression and imprinted genes.23 A schematic
diagram of the computational method is shown in FIGURE 1.

For each SNP in a cDNA library, we could observe ESTs containing either
allele A, allele B, or both alleles. D1 designates data that only allele A is observed
in the cDNA library. If only allele A was observed, we can calculate the probability
of genotype of the cDNA library as PAA = 1/(1 + 0.5n−1), PAB = 0.5n−1/(1 + 0.5n−1),
and PBB = 0. Similarly, D3 designates data that only allele B is observed in the
cDNA library. If only allele B was observed, we can calculate the probability of
genotype of the cDNA library as PBB = 1/(1 + 0.5n−1), PAB = 0.5n−1/(1 + 0.5n−1), and
PAA = 0. If both allele A and allele B were observed, PAB = 1 and PAA = PBB = 0.
For the population allele frequency, QA = PAA + 0.5PAB. From Hardy-Weinberg
equilibrium, we obtained QAB = 2QA(1 − QA). A significant reduction in observed
heterozygosity (PAB) compared to the expected heterozygosity (QAB) is computed
using the Z-statistics.

Imprinted genes and mono-allelic genes differentially express one allele. To model
allele-specific gene expression, it is assumed that each cDNA library represents an
individual and all libraries (or the sum of available libraries) constitute a population.
If both A and B alleles of an SNP in a gene X are represented in a cDNA library, the
individual is heterozygous at the SNP in the gene X. If only allele A is represented in
the cDNA library (FIG. 1, D1), the genotype for that individual could be either AA or
AB. The probability that the individual is AA or AB can be inferred using Bayes’ rule.

FIGURE 1. Computational analysis of genes preferentially expressing one allele.
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We consider the following three kinds of allele observations D for an SNP from
a library:

D1: the allele A appeared n times in the library, or

D2: the alleles A and B appeared n1 and n2 times, respectively, in the library, or

D3: the allele B appeared n times in the library.

With the uniform prior, the posterior probability of genotypes AA and AB with the
observation of n EST clones containing the allele A was calculated as

 PAA|D1 = 1/(1 + 0.5n−1) and PAB|D1 = 0.5n−1/(1 + 0.5n−1).

Similarly, the posterior probability of genotypes BB and AB with the observation of
n EST clones containing the allele B was calculated as

 PBB|D3 = 1/(1 + 0.5n−1) and PAB|D3 = 0.5n−1/(1 + 0.5n−1).

When both alleles appeared at least once in the library,

 PAB|D2 = 1, PAA|D2 = 0, and PBB|D2 = 0.

Genotype frequencies, PAA, PAB, and PBB, were estimated from individual geno-
types. The allele frequency in the population is calculated as QA = PAA + 0.5PAB
and QB = 1 − QA. The expected heterozygote frequency based on the Hardy-Weinberg
equilibrium distribution is calculated as QAB = 2QAQB. PAB tends to be lower than
QAB for imprinted genes and genes displaying mono-allelic expression. This
behavior can be analyzed using Z-statistics described in FIGURE 1. Bayes’ inference
of genotypes and the computation of Z-statistics are two different procedures. The
computational results from Bayes’ inference are used in computing Z-statistics. The
approach was applied to a data set based on SNP data from Buetow et al.20 We have
taken several steps to ensure that high-quality EST clones are used in our data set.
The EST clones and SNPs must meet the following three criteria to be included in
our data set: (1) Phred quality score of an EST clone is equal to or greater than 20;
(2) SNP score is equal to or greater than 0.99;20 (3) SNPs are mapped to Locuslink.
This data set consists of 112,812 records for 19,312 unique SNPs.

The difference between PAB and QAB was calculated for each SNP using Z-
statistics. The probability of differential allele-specific expression is indicated by the
P value for each SNP. Fifty of 19,312 SNPs in the data set are in known imprinted
genes. The validity of the computational method was tested by determining if SNPs
in imprinted genes had small P values, that is, within the top 1% (194 out of 19,312)
of SNPs ordered according to increasing P value. Four SNPs in imprinted genes
were in the top 1% of the data set: 3 in IGF2 and 1 in PEG3. This finding is highly
significant (P = .0016 in one-sided Fisher’s exact test). Interestingly, when ESTs in
tumor tissue libraries were used to populate the data set, only 1 of these 4 SNPs was
in the top 1% of differentially expressed genes. This is consistent with the hypothesis
that LOI occurs during tumorigenesis. Bayes’ rule was used to infer the individual
genotype frequencies. As a comparison, we consider the following non-Bayesian
rule in the inference:

PAA|D1 = 1, PAB|D1 = PBB|D1 = 0, and
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PAB|D2 = 1, PAA|D2 = PBB|D2 = 0, and 

PBB|D3 = 1, PAA|D3 = PAB|D3 = 0.

When we replaced the Bayes’ rule by the non-Bayesian rule, the SNPs in known
imprinted genes had higher P values and were not in the top 1% of SNPs in the data set.

An alternative method for identifying imprinted genes was also developed. In this
case, allele-specific gene expression is analyzed in libraries from heterozygotes.
This approach identified 165 SNPs with differential allele-specific expression
(P < .05, binomial test) and 2 of them were in known imprinted genes (P = .0681 in
one-sided Fisher’s exact test). Thus, this alternative method performs less well than
the former method, although it may seem more intuitive.

An initial validation experiment demonstrated that 2 of 18 genes selected from
the top 1% showed mono-allelic gene expression in fetal kidney and fetal liver using
MALDI-TOF. Thus, we demonstrated the potential utility of this computational
method in identifying differential allelic gene expression and novel imprinted genes.

SEQUENCE MOTIFS OF IMPRINTED GENES

We set out to identify novel sequence motifs that are associated with imprinted
genes. Regulatory elements tend to locate on the conserved sequences.15 Thus, we
searched conserved sequences between human and mouse imprinted genes using
PipMaker program.25 Genomic sequences of 41 imprinted genes (including their 10-
kb upstream and 10-kb downstream sequences) were retrieved from ftp://
ftp.ncbi.nih.gov/genomes/. We were able to find both human and mouse sequences
for 36 imprinted genes, 24 of which were used as a training set and 12 of which were
used as a testing set. The PipMaker program was used to align human and mouse
genomic DNA sequences. We used the MEME program26 to search motifs in the
conserved noncoding sequences among the human imprinted genes. This analysis
identified 16 motifs. Motifs 1–4 are located in the upstream regions of the imprinted
genes, while motifs 5–8 and motifs 9–16 are located in the downstream and intron
regions of the imprinted genes, respectively. We then used MAST program27 to
search the presence of these motifs in the 24 imprinted genes as well as 128 non-
imprinted genes, which were identified in our previous study.24 Fifteen of the 16
motifs were found to be significantly associated with the 24 imprinted genes
(P < .05, Fisher’s exact test).

It has been suggested that imprinted genes share some common features.16,28

Based on the distribution of the motifs among the 24 imprinted genes and the 128
nonimprinted genes, we developed a logistic regression model that was able to dis-
tinguish imprinted genes from nonimprinted genes. We initially had 16 motifs as
predictor variables for the model. However, when all 16 motifs were used to build a
logistic regression model, the iteration process to find the coefficients of the model
was not convergent. We excluded motifs 4, 5, and 15 because their P values in
Fisher’s exact test were greater than 0.01. We also excluded motif 11 since it was
underrepresented in the imprinted genes. We started a model with 12 motifs. An input
vector to the model is a feature vector for a gene indicating whether each of these 12
motifs is associated with this gene. The response of the model is the probability of
the gene being an imprinted gene. We performed the stepwise model selection by
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minimizing the AIC criterion and found the optimal 6 motifs (motifs 3, 7, 10, 12, 13,
and 16) as input variables for a logistic regression model to score imprinted genes.
As we reduce the number of the predictor variables from 12 to 6, the AIC of the
corresponding model drops from 43.2 to 34. The minimum AIC for the model with
5 motifs is 37. Thus, the 6 motifs are optimal predictors from the AIC point of view.
In fact, we computed AIC for every possible subset of the 12-motif set. The 6-motif
set (3, 7, 10, 12, 13, 16) has the minimum AIC. The estimated model is as follows:

P = 1/[1 + exp(7.1 − 4.8*M3 − 12.2*M7 − 4.2*M10 − 4.9*M12 − 12.1*M13 − 12*M16)].

Our model correctly assigned 127 out of the 128 nonimprinted genes and 22 out
of the 24 imprinted genes in the training set. The accuracy, sensitivity, and specificity
of the model are 98%, 92%, and 99%, respectively. To further validate the model,
we performed an open test on the 12 imprinted genes, which were set aside as a
testing set as described. The model is able to assign high probability scores to 8 of
the 12 imprinted genes.

BIOINFORMATICS APPROACH TO EPIGENOME RESEARCH

Extensive bioinformatics infrastructure is needed to fully integrate data from
genome sequences, epigenome, experiments, analysis, and knowledge, and to apply
these data to improve our understanding of cancer. We have built software tools and
databases to support information-driven cancer research (FIG. 2). We have been
developing robust software pipelines that can seamlessly integrate heterogeneous
data from external and internal sources. Object-oriented programming has been used
for the pipelines, which are implemented using Perl and Java. We stored data either
in flat files or in a relational database such as Oracle to allow efficient storage,
retrieval, and updating of the data. We built our bioinformatics system by leveraging

FIGURE 2. An integrated system to study cancer epigenetics.
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the existing infrastructures such as Bioperl (http://bio.perl.org/), NCBI (http://
www.ncbi.nlm.nih.gov/), and caBIO (http://ncicb.nci.nih.gov/core/caBIO/). Our
primary focus is to build a computation engine for biological knowledge discovery
and bioinformatics system to manage the data and computation. We use statistical
packages such as R, SPLUS, and SAS as the core, complemented by customized
programs. We develop modules that automatically fetch data from external sources,
preprocess the data, and format the input and output. Preprocessing data include data
filtering, normalization, and merging relevant properties. Some examples of the
application of statistical computation have been described in the previous sections.
We are interested in extracting patterns, trends, and relationships of molecular activ-
ities in five levels from massive data sets using cluster analysis, classification, and
regression techniques. The five levels are genome (sequence, SNP, and mutation),
epigenome (methylation, imprinting, and chromatin), RNA (gene expression and
RNA splicing), protein (protein expression and biochemical properties), and func-
tions (cancer phenotype and cellular functions). It is critical to choose the correct
features and models to quantify molecular processes in these levels. The learning
problems for these models can be either unsupervised or supervised. The unsuper-
vised learning methods such as clustering methods and self-organization maps will
enable us to verify the existing functions and to discover new functions of genes. We
can apply unsupervised learning methods to extract useful features that characterize
the molecular activities. On the other hand, the supervised learning methods such as
linear or nonlinear regression models, artificial neural networks, ensemble methods,
and support vector machines will enable us to code biological knowledge into the
models. A successful modeling depends critically on the strategy used for model
selection when a huge number of factors are related to the process that we are trying
to quantify. We can use Akaike’s information criterion (AIC) (an example was
shown in the previous section), Bayesian information criterion (BIC), Minimum
Message Length (MML), and Minimum Description Length (MDL) methods for
model selection. With the advanced machine learning methods and the model
selection strategies, we will find better models for biological knowledge discovery.

SUMMARY

In conclusion, challenge in the next decade of biomedical research lies in the
functional annotation of the genome, epigenome, and proteome in interaction
networks. The success of this mission critically depends on integration between
experiments and data management. The experimental design and execution should
fully utilize existing data and knowledge, while computational analysis should be
based on experimental data and supported by the data and should suggest new
experiments. The continued cycles of experiments and computations will be the
approach to study cancer in the systems biology era.
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